

# GCSE Science A / Chemistry

CH1HP Final Mark Scheme

4405 / 4402 June 2017

Version/Stage: v1.0

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright  $\ensuremath{\textcircled{O}}$  2017 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

# Information to Examiners

## 1. General

The mark scheme for each question shows:

- the marks available for each part of the question
- the total marks available for the question
- the typical answer or answers which are expected
- extra information to help the Examiner make his or her judgement and help to delineate what is acceptable or not worthy of credit or, in discursive answers, to give an overview of the area in which a mark or marks may be awarded
- the Assessment Objectives and specification content that each question is intended to cover.

The extra information is aligned to the appropriate answer in the left-hand part of the mark scheme and should only be applied to that item in the mark scheme.

At the beginning of a part of a question a reminder may be given, for example: where consequential marking needs to be considered in a calculation; or the answer may be on the diagram or at a different place on the script.

In general the right-hand side of the mark scheme is there to provide those extra details which confuse the main part of the mark scheme yet may be helpful in ensuring that marking is straightforward and consistent.

# 2. Emboldening and underlining

- **2.1** In a list of acceptable answers where more than one mark is available 'any **two** from' is used, with the number of marks emboldened. Each of the following bullet points is a potential mark.
- **2.2** A bold **and** is used to indicate that both parts of the answer are required to award the mark.
- **2.3** Alternative answers acceptable for a mark are indicated by the use of **or**. Different terms in the mark scheme are shown by a / ; eg allow smooth / free movement.
- **2.4** Any wording that is underlined is essential for the marking point to be awarded.

#### 3. Marking points

#### 3.1 Marking of lists

This applies to questions requiring a set number of responses, but for which students have provided extra responses. The general principle to be followed in such a situation is that 'right + wrong = wrong'.

Each error/contradiction negates each correct response. So, if the number of error/contradictions equals or exceeds the number of marks available for the question, no marks can be awarded.

However, responses considered to be neutral (indicated as \* in example 1) are not penalised.

Example 1: What is the pH of an acidic solution?

|         |          |               | [1 mark] |
|---------|----------|---------------|----------|
| Student | Response | Marks awarded |          |
| 1       | green, 5 | 0             |          |
| 2       | red*, 5  | 1             |          |
| 3       | red*, 8  | 0             |          |

Example 2: Name two planets in the solar system.

[2 marks]

| Student | Response          | Marks awarded | [ |
|---------|-------------------|---------------|---|
| 1       | Pluto, Mars, Moon | 1             |   |
| 2       | Pluto, Sun, Mars, | 0             |   |
|         | Moon              |               |   |

## 3.2 Use of chemical symbols/formulae

If a student writes a chemical symbol/formula instead of a required chemical name, full credit can be given if the symbol/formula is correct and if, in the context of the question, such action is appropriate.

# 3.3 Marking procedure for calculations

Full marks can be given for a correct numerical answer, without any working shown. However, if the answer is incorrect, mark(s) can be gained by correct substitution / working and this is shown in the 'extra information' column or by each stage of a longer calculation.

# 3.4 Interpretation of 'it'

Answers using the word 'it' should be given credit only if it is clear that the 'it' refers to the correct subject.

#### 3.5 Errors carried forward

Any error in the answers to a structured question should be penalised once only. Papers should be constructed in such a way that the number of times errors can be carried forward are kept to a minimum. Allowances for errors carried forward are most likely to be restricted to calculation questions and should be shown by the abbreviation 'ecf' in the marking scheme.

## 3.6 Phonetic spelling

The phonetic spelling of correct scientific terminology should be credited **unless** there is a possible confusion with another technical term.

# 3.7 Brackets

(....) are used to indicate information which is not essential for the mark to be awarded but is included to help the examiner identify the sense of the answer required.

## 3.8 Accept/allow

Accept is used to indicate an equivalent answer to that given on the left-hand side of the mark scheme. Allow is used to denote lower-level responses that just gain credit.

# 3.9 Ignore/Insufficient/Do <u>not</u> allow

Ignore or insufficient is used when the information given is irrelevant to the question or not enough to gain a marking point. Any further correct amplification could gain the marking point.

Do **not** allow means that this is a wrong answer which, even if the correct answer is given, will still mean that the mark is not awarded.

## 4. Quality of Written Communication and levels marking

In Question 3 students are required to produce extended written material in English, and will be assessed on the quality of their written communication as well as the standard of the scientific response.

Students will be required to:

- use good English
- organise information clearly
- use specialist vocabulary where appropriate.

The following general criteria should be used to assign marks to a level.

## Level 1: Basic

- Knowledge of basic information.
- Simple understanding.
- The answer is poorly organised, with almost no specialist terms and their use demonstrating a general lack of understanding of their meaning, little or no detail.
- The spelling, punctuation and grammar are very weak.

## Level 2: Clear

- Knowledge of accurate information.
- Clear understanding.
- The answer has some structure and organisation, use of specialist terms has been attempted but not always accurately, some detail is given.
- There is reasonable accuracy in spelling, punctuation and grammar, although there may still be some errors.

#### Level 3: Detailed

- Knowledge of accurate information appropriately contextualised.
- Detailed understanding, supported by relevant evidence and examples.
- Answer is coherent and in an organised, logical sequence, containing a wide range of appropriate or relevant specialist terms used accurately.
- The answer shows almost faultless spelling, punctuation and grammar.

| Question | Answers                                                                                                                                                                                                                                                                                                                                                                              | Extra information                                                                                        | Mark | AO /<br>Spec. Ref.            |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------|-------------------------------|
| 1(a)(i)  | <u>same</u> number of protons <b>or</b><br>12 protons in each                                                                                                                                                                                                                                                                                                                        | ignore electrons<br>ignore it is the same element<br>do <b>not</b> allow same number of<br>neutrons      | 1    | <b>AO2</b><br>1.1.1f,g        |
| 1(a)(ii) | (the mass number is) the sum of<br>the protons and neutrons<br>(so the atoms contain) different                                                                                                                                                                                                                                                                                      | ignore electrons in shells<br>do <b>not</b> allow electrons in<br>nucleus                                | 1    | AO1<br>AO2<br>1.1.1g          |
|          | numbers of neutrons                                                                                                                                                                                                                                                                                                                                                                  | allow 12, 13 and 14 neutrons for<br>two marks<br>if no other mark awarded allow<br>one mark for isotopes |      |                               |
| 1(b)(i)  | 3 / three                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                          | 1    | <b>AO2</b><br>1.1.3a,b        |
| 1(b)(ii) | 7 / seven                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                          | 1    | <b>AO2</b><br>1.1.3a,b        |
| 1(c)     | 319 g(CuSO <sub>4</sub> ) and 36 g(H <sub>2</sub> O)                                                                                                                                                                                                                                                                                                                                 |                                                                                                          | 1    | <b>AO3</b><br>1.1.3b,c        |
| 1(d)     | <ul> <li>any two changes from:</li> <li>limewater turns cloudy</li> <li>solution turns blue</li> <li>mass decreases</li> <li>copper carbonate or (green)<br/>solid disappears</li> <li>bubbles / fizzing /<br/>effervescence</li> <li>explanation:</li> <li>because carbon dioxide is<br/>produced or copper sulfate is<br/>produced or calcium carbonate<br/>is produced</li> </ul> | allow milky / white<br>allow weight decreases<br>explanation must be linked to<br>their observation      | 2    | AO1<br>AO2<br>AO3<br>1.2.1e,f |
| Total    |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                          | 9    |                               |

| Question | Answers                                                                   | Extra information                                                                                   | Mark | AO /<br>Spec. Ref.             |
|----------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------|--------------------------------|
| 2(a)(i)  | electronic structure drawn                                                | allow any representation of an electron                                                             | 1    | <b>AO2</b><br>1.1.1h           |
|          |                                                                           | allow 2,4                                                                                           |      |                                |
| 2(a)(ii) | six / 6                                                                   |                                                                                                     | 1    | AO1<br>AO2                     |
|          | protons                                                                   | do <b>not</b> allow electrons in<br>nucleus otherwise ignore<br>electrons                           | 1    | 1.1.1c;d;e                     |
|          |                                                                           | do <b>not</b> allow nucleus is neutral                                                              |      |                                |
|          | (protons) are positively charged                                          | allow (protons are) + / +1 / 1+                                                                     | 1    |                                |
|          |                                                                           | ignore statements about mass                                                                        |      |                                |
|          |                                                                           | if no other mark awarded allow one mark for nucleus                                                 |      |                                |
| 2(b)     | (a hydrocarbon is) made up of hydrogen and carbon (atoms) <u>only</u>     | do <b>not</b> allow mixture                                                                         | 1    | <b>AO1</b><br>1.4.1a;c         |
| 2(c)(i)  | н н<br>     <br>нсн<br>     <br>н н                                       | ethane correctly drawn with<br>another hydrogen on each<br>carbon and another three single<br>bonds | 1    | <b>AO1</b><br>1.4.2a<br>1.5.1c |
|          |                                                                           | ethene correctly drawn with a<br>double bond between the<br>carbon atoms                            | 1    |                                |
| 2(c)(ii) | as the number of carbon atoms<br>increases the boiling point<br>increases | allow converse<br>ignore alkene                                                                     | 1    | <b>AO3</b><br>1.4.2c           |

| 2(c)(iii) | the boiling points of alkanes are                          | allow the boiling points of                                                                                                                                  | 1  | AO2                             |
|-----------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------------------------------|
| 2(0)(11)  | higher than the boiling points of alkenes                  | alkenes are lower than the<br>boiling points of alkanes                                                                                                      | I  | 1.4.2b;c                        |
|           | that have the same number of carbon atoms                  | consequential on first marking point                                                                                                                         | 1  |                                 |
|           | or state a correct example                                 | e.g. hexane has a higher boiling<br>point than hexene <b>or</b> hexane<br>boils at 69°C hexene boils at<br>64°C                                              |    |                                 |
|           |                                                            | if no other mark awarded allow<br>both alkanes and alkenes have<br>the same pattern of the more<br>carbon atoms the higher the<br>boiling point for one mark |    |                                 |
| 2(d)      | (alkane molecules are) cracked                             | allow break down / up <b>or</b><br>decompose <b>or</b> split up<br>ignore separate                                                                           | 1  | AO1<br>AO2<br>AO3<br>1.5.1a;b;c |
|           | to produce small(er) molecules /<br>alkanes / hydrocarbons | allow short chain for small                                                                                                                                  | 1  |                                 |
|           | and alkenes <b>or</b> a named alkene                       | allow molecules that have a double bond <b>or</b> are unsaturated                                                                                            | 1  |                                 |
|           |                                                            | if no other mark awarded allow<br>evaporate <b>or</b> boil for one mark                                                                                      |    |                                 |
|           |                                                            | ignore turns to gas                                                                                                                                          |    |                                 |
| Total     |                                                            |                                                                                                                                                              | 13 |                                 |

| Question                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Answei                                                                                                     | rs                                                                                  |                                         | Extra infor                                                                                                                      | mation                                                                                                                            | Mark                                 | AO /<br>Spec. Ref.               |
|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------|
| 3                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                            |                                                                                     |                                         |                                                                                                                                  |                                                                                                                                   | 6                                    | AO2<br>AO3                       |
| Communicat                                                                                                                  | ion (QV                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | /C) as well a                                                                                              | s the stand                                                                         | dard o                                  | ed by the Quality of<br>of the scientific resp<br>nd apply a 'best-fit'                                                          | oonse. Examine                                                                                                                    |                                      | 1.2.1a;b<br>1.4.2a<br>1.4.3a;b;c |
| 0 mark                                                                                                                      | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Level 1 (1-                                                                                                | 2 marks)                                                                            | Lev                                     | /el 2 (3–4 marks)                                                                                                                | Level 3 (5–6                                                                                                                      | marks)                               | 1.7.2a;i                         |
| no relevant<br>information g                                                                                                | liven                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | discrete rele<br>points made<br>types of pol<br>problematic<br><b>or</b> environm<br>impacts               | e about<br>lution <b>or</b><br>effects                                              | how<br>env<br>imp<br>the<br>the<br>effe | explanation of<br>v an<br>vironmental<br>pact is caused by<br>pollution from <b>or</b><br>problematic<br>ect of a linked<br>cess | detailed explan<br>of how enviror<br>impacts are ca<br>by the pollution<br><b>or</b> the problem<br>effects of linke<br>processes | nmental<br>aused<br>ns from<br>natic |                                  |
| -                                                                                                                           | f chemi                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | stry points                                                                                                |                                                                                     |                                         | sponse could incl                                                                                                                |                                                                                                                                   |                                      |                                  |
| <ul> <li>quarryin</li> <li>drilling</li> <li>thermal</li> <li>combus</li> </ul>                                             | Processes       Types of pollution and problematic effects:         • quarrying       • visual pollution         • drilling       • noise pollution         • thermal decomposition       • dust pollution         • combustion of fossil fuel       • destruction of land         • use of explosives       • air / atmospheric pollution (methane, carbon dioxide, sulphur dioxide, NO <sub>x</sub> , particulates)         • water (rivers / lakes / seas) pollution |                                                                                                            |                                                                                     |                                         |                                                                                                                                  |                                                                                                                                   |                                      |                                  |
| <ul> <li>distur</li> <li>breat</li> <li>destr</li> <li>(CH<sub>4</sub></li> <li>(parti</li> <li>(SO<sub>2</sub>)</li> </ul> | uction o<br>bance o<br>hing pro<br>uction o<br>; CO <sub>2</sub> )<br>culates)<br>; NO <sub>x</sub> )                                                                                                                                                                                                                                                                                                                                                                   | f areas of na<br>of people and<br>oblems <b>or</b> as<br>f habitats <b>or</b><br>greenhouse<br>global dimm | d animals<br>thmatic atta<br>biodiversity<br>gases → g<br>ning → con<br>rain → cons | acks<br>y or k<br>globa<br>sequ         | kills wildlife and pla<br>al warming → conse<br>lences including bre<br>ences including bre                                      | equences<br>eathing problem                                                                                                       |                                      |                                  |
|                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                            |                                                                                     |                                         |                                                                                                                                  |                                                                                                                                   |                                      |                                  |

| Question  | Answers                                                                               | Extra information                                                                                    | Mark | AO /<br>Spec. Ref.   |
|-----------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------|----------------------|
| 4(a)(i)   | <u>many</u> (small / ethene) molecules<br>/ monomers join together                    |                                                                                                      | 1    | <b>AO1</b><br>1.5.2a |
|           | <b>or</b> (small / ethene) molecules /<br>monomers form chains / large<br>molecules   |                                                                                                      |      |                      |
| 4(a)(ii)  | (from 2006) until 2009 the number of bags used decreased                              |                                                                                                      | 1    | <b>AO2</b><br>1.5.2  |
|           | from 2009 / 2010 (to 2014) the number of bags used increased                          |                                                                                                      | 1    |                      |
|           |                                                                                       | if no other mark awarded allow<br>one mark for the number of<br>bags decreased and then<br>increased |      |                      |
| 4(a)(iii) | any <b>two</b> from:<br>• bags are thinner                                            |                                                                                                      | 2    | <b>AO3</b><br>1.5.2  |
|           | <ul> <li>bags are smaller</li> </ul>                                                  |                                                                                                      |      |                      |
|           | <ul> <li>bags use less material</li> </ul>                                            |                                                                                                      |      |                      |
|           | <ul> <li>bags are lighter or less<br/>dense</li> </ul>                                |                                                                                                      |      |                      |
| 4(b)(i)   | landfill space is limited                                                             | ignore takes up space in landfill                                                                    | 1    | AO1                  |
|           |                                                                                       | allow landfill is running out                                                                        |      | 1.5<br>1.5.2c        |
|           | (many polymers) are not biodegradable                                                 | allow a long time to degrade <b>or</b><br>long time to break down                                    | 1    | 1.0.20               |
| 4(b)(ii)  |                                                                                       | ignore costs                                                                                         |      | AO1                  |
|           | (polymers are made from) crude<br>oil which is a limited / non-<br>renewable resource |                                                                                                      | 1    | 1.5                  |
|           | less energy is needed to recycle polymers                                             | allow less carbon dioxide<br>produced <b>or</b> less global<br>warming                               | 1    |                      |
| Total     |                                                                                       |                                                                                                      | 9    |                      |

| Question | Answers                                                                                                                                                                                                                                                                                                                                 | Extra information                                                                                                                                                                                                                                                                                                                                                                         | Mark | AO /<br>Spec. Ref.       |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------|
| 5(a)(i)  | <ul> <li>any one from:</li> <li>all these gases /<br/>hydrogen / methane /<br/>water vapour / ammonia<br/>may not have been in the<br/>Earth's early atmosphere</li> <li>the conditions of the<br/>reaction were not like<br/>those on early Earth</li> <li>many different amino<br/>acids are needed for life<br/>processes</li> </ul> | ignore no proof / evidence <b>or</b> no<br>one was there <b>or</b> references to<br>religion <b>or</b> meteorites / comets.<br>allow nobody knows what was in<br>the Earth's early atmosphere<br>allow very little (0.5%) in the<br>Earth's early atmosphere<br>allow nobody knows what the<br>conditions were on early Earth<br>allow only simple amino acids /<br>glycine were produced | 1    | <b>AO3</b><br>1.7.2d;e   |
| 5(a)(ii) | <ul> <li>any three from:</li> <li>used by plants / algae or<br/>for photosynthesis</li> <li>absorbed / dissolved by<br/>oceans</li> <li>locked up in <u>sedimentary</u><br/>rocks / carbonates /<br/>limestone</li> <li>locked up in fossil fuels</li> </ul>                                                                            | ignore volcanoes<br>allow stored in for locked up<br>allow stored in for locked up<br>mention of respiration:<br>maximum two marks                                                                                                                                                                                                                                                        | 3    | <b>AO1</b><br>1.7.2f;g;h |
| 5(b)(i)  | helium / He <b>and</b> neon / Ne                                                                                                                                                                                                                                                                                                        | both needed                                                                                                                                                                                                                                                                                                                                                                               | 1    | <b>AO2</b><br>1.7.2j     |

| 5(b)(ii)  | carbon dioxide would be solid <b>or</b><br>would block pipes                                             | ignore freezes<br>allow forms <u>dry</u> ice | 1  | <b>AO3</b><br>1.7.2j     |
|-----------|----------------------------------------------------------------------------------------------------------|----------------------------------------------|----|--------------------------|
| 5(b)(iii) |                                                                                                          | mark independently                           |    | AO2                      |
|           | the other gas is argon / Ar                                                                              |                                              | 1  | 1.7.2j                   |
|           | because they have similar<br>boiling points <b>or</b> there is only<br>3 °C difference in boiling points |                                              | 1  |                          |
| 5(c)      |                                                                                                          | mark independently                           |    | AO1                      |
|           | <b>stage 1:</b> oxygen reacts with carbon                                                                |                                              | 1  | <b>AO2</b><br>1.3.2a;b;c |
|           | so carbon content decreases <b>or</b> carbon forms carbon dioxide                                        | allow because cast iron is (too)<br>brittle  | 1  |                          |
|           | <b>stage 2:</b> (other metals added) to form an alloy                                                    | allow to stop layers sliding                 | 1  |                          |
|           | so the steel has a specific property / specific use                                                      | allow because pure iron is (too)<br>soft     | 1  |                          |
| Total     |                                                                                                          |                                              | 12 |                          |

| Question | Answers                                                                                                    | Extra information                                                                               | Mark | AO /<br>Spec. Ref. |
|----------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------|--------------------|
| 6(a)     |                                                                                                            | accept reverse arguments                                                                        |      | AO2                |
|          |                                                                                                            | about fossil diesel throughout                                                                  |      | AO3                |
|          | biodiesel is carbon neutral                                                                                | allow does not contribute to<br>global warming <b>or</b> no extra<br>carbon dioxide is released | 1    | 1.4/1.4.3a;c;e     |
|          | because biodiesel releases the<br>carbon dioxide that was used<br>by the plants (during<br>photosynthesis) |                                                                                                 | 1    |                    |
|          | OR                                                                                                         |                                                                                                 |      |                    |
|          | biodiesel is renewable /<br>sustainable (1)                                                                |                                                                                                 |      |                    |
|          | because crops can be<br>replanted (to produce more<br>biodiesel) (1)                                       |                                                                                                 |      |                    |
|          | OR                                                                                                         |                                                                                                 |      |                    |
|          | fossil diesel is non-renewable<br>(1)                                                                      |                                                                                                 |      |                    |
|          | because it takes millions of years to form (1)                                                             | ignore fossil diesel will run out                                                               |      |                    |

| 6(b)  |                                                                                                | allow diagrams for the last three marking points                                    |    | AO1      |
|-------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----|----------|
|       |                                                                                                |                                                                                     |    | 1.6.2a;b |
|       | emulsifier is shaken with <b>or</b><br>added to a mixture of water and<br>oil                  |                                                                                     | 1  |          |
|       | the head (of the emulsifier<br>molecule) <b>or</b> hydrophilic end<br>dissolves in the water   |                                                                                     | 1  |          |
|       | the tail (of the emulsifier<br>molecule) <b>or</b> hydrophobic end<br>dissolves in the oil     | allow one mark for wrong way round                                                  | 1  |          |
|       | so that a suspension <b>or</b> stable<br>droplets of oil in water (or vice<br>versa) is formed |                                                                                     | 1  |          |
|       |                                                                                                | attracted to value oil oil oil                                                      |    |          |
|       |                                                                                                | (M2 + M3) (M2+M3+M4)                                                                |    |          |
| 6(c)  | orange                                                                                         | allow brown                                                                         | 1  | AO1      |
|       | to colourless                                                                                  | ignore clear / transparent                                                          | 1  | 1.6.3a   |
|       |                                                                                                | allow decolourised                                                                  |    |          |
| 6(d)  | (hydrogen) adds to the (carbon-<br>carbon) double bond                                         | allow opens up / breaks                                                             | 1  | AO1      |
|       | (hydrogenated oils) have higher melting points                                                 |                                                                                     | 1  | 1.6.3a;b |
|       | so are hardened <b>or</b> are solid (at room temperature)                                      | ignore spreadable                                                                   | 1  |          |
|       |                                                                                                | if no other mark awarded allow<br>one mark for unsaturated oils<br>become saturated |    |          |
| Total |                                                                                                |                                                                                     | 11 |          |